

LA CARRETERA Y LA INFORMATICA

* POR JAIME IZQUIERDO DEL FRAILE

aralelamente al XVIII Congreso Mundial de Carreteras celebrado recientemente en Bruselas, la AIPCR organizó una exposición-demostración bajo el titulo ROAD-87, orientada hacia la informática —y más particularmente a la microinformática— y la carretera.
En el pabellón 7 de lo que fueron las instalaciones de la Exposición Universal y ocupando 6.000 m², un gran número de países, entre los que destacaban Bélgica, Inglaterra, España y Francia, presentaron el nivel tecnológico y las aplicaciones más importantes en uso en sus distintas administraciones, centros de investigación, universidades y empresas.

RUTAS

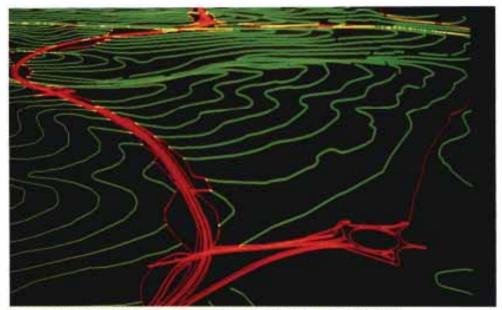
En base a las aplicaciones y resultados expuestos y a lo debatido en las Comisiones aparecen importantes referencias en las conclusiones del Congreso, entre las que destacan:

«La informática abre nuevos horizontes a la carretera, considerada aquí en su más amplia acepción, es decir, no solamente en sus aspectos geométrico y estructural, sino también como un servicio que debe asegurar el transporte en condiciones óptimas de seguridad y confort. Con horizonte en el año 2000 se nos prometen vehículos con guiado casi automático.

Pero el guiado por radio automático se nos promete para mañana. Aquello que hoy consideramos como accesorio será, quizá en pocos años, lo que constituya esencialmente la ingeniería y la técnica de carreteras.»

«Es necesario, desarrollando métodos complejos con ayuda del ordenador, facilitar la toma de decisiones políticas en materia de carreteras.

Se trata de armonizar un conjunto de conceptos diversos y a veces contradictorios, tales como los acuerdos o deseos de las poblaciones, la seguridad, la economía, el medio ambiente, la accesibilidad y el urbanismo. La vida en sociedad tiene un precio, y en este sentido se hace una importante llamada al mundo político.»


Por otra parte, en dichas conclusiones se llama la atención sobre la necesidad de tomar en consideración un gran abanico de sistemas informatizados de posible utilización en carreteras para:

- la elaboración de programas,
- el desarrollo de proyectos,
- la ejecución y control de calidad de las obras,
- la explotación, especialmente la información a los usuarios.
- la gestión y la conservación,

así como la de elaborar recomendaciones para facilitar el uso de los actuales y futuros sistemas mejorando su fiabilidad, pero sobre todo su estandarización, no olvidando que el desarrollo de la informática va a tener importantes efectos sociales, políticos y económicos que deben analizarse con la máxima atención.

Por lo anteriormente expuesto, es obvio el interés y la preocupación que existe en todo el mundo por la urgente aplicación de los avances tecnológicos en materia de informática en el campo de la carretera, pero también es evidente la dificultad y complejidad cuando llega el momento de decidir el sistema más adecuado.

Es obligatorio reconocer, en principio, que la informática no ha satisfecho a la mayoría de los usuarios. Se han producido tensiones al implantar los sistemas

Perspectiva obtenida en una estación de diseño gráfico por ordenador.

informáticos, muy por encima de lo normal en otros tipos de cambios promovidos por la ciencia o la tecnología. Los cambios han sido y siguen siendo demasiado rápidos, lo que reclama una continua readaptación, llegando a fatigar en exceso. Los nuevos conocimientos nos invaden o inundan como una pesada losa.

El usuario de informática se enfrenta continuamente a la aparición de nuevos equipos, nuevos sistemas operativos, nuevos periféricos, etc., con sus problemas de compatibilidad y aprendizaje, y sobre todo, con la absurda necesidad de reprogramar y reestructurar la información. Lo que debería ser una herramienta que facilite el trabajo se convierte en la tarea más penosa que cada vez reclama más dinero, más especialistas y más atención. Hasta hoy, en definitiva, las generaciones de ordenadores no se han sincronizado con las generaciones de informáticos.

Quizá, como se ha advertido ya repetidas veces, se ha cometido el gravísimo error de querer adaptar la sociedad al computador, cuando debe ser todo lo contrario, puesto que la sociedad no reclama informática sino información.

Es de esperar que en el próximo futuro se acelere una progresiva adaptación del computador a la sociedad, pero sería absurdo no admitir a su vez que se van a producir cambios importantes en esa sociedad de forma absolutamente inevitable.

La posibilidad actual de tratar, seleccionar, elaborar y recuperar grandes masas de información, de forma personal y a bajo coste, nos sitúa frente a un cambio análogo al que supuso la invención de la escritura, la imprenta o la radio y la televisión. La informática aparece hoy completando ese ciclo.

Pero el hecho es que el hombre no

evoluciona con un ritmo comparable. La inercia de sus hábitos, sus habilidades, su trabajo, su entorno cultural, en suma, una inercia de su espíritu como síntesis de unos valores que, por otra parte, son una parte esencial del patrimonio cultural de la humanidad, parece que se lo impiden.

Estamos ante uno de los mayores retos con los que se ha podido enfrentar nunca esa humanidad. Casi nadie duda ya de que el progreso humano, la salvación del llamado Tercer Mundo, la libertad individual y la calidad de vida, son función de una urgente y adecuada utilización de esta poderosa herramienta que, mal utilizada (también puede servir para aumentar los desequilibrios y las injusticias, sojuzgando de forma intolerable a los más débiles!

Todo lo anterior es fácil comprobar que nos afecta, en mayor grado, a los profesionales de la técnica, pero al menos debe añadirse que la informática actual, correctamente utilizada, aumenta nuestra independencia y nos abre extraordinariamente las puertas de la creatividad. Todo estudiante, todo ingeniero, todo diseñador o inventor debe ser capaz de usar los nuevos instrumentos de los ordenadores para aprender más deprisa y mejor, para revisar, diseñar, comparar, formular hipótesis y desarrollar sus ideas.

Refiriéndonos ya exclusivamente a la carretera, parece conveniente insistir en que asistimos, quizá, al cambio tecnológico más importante en su desarrollo histórico.

En un primer período, en el siglo XVIII, Tressaguet, Mac Adam, Telford, etc., representan el arranque de una importante técnica o ingeniería.

Posteriormente, la tecnología que impulsaron los ferrocarriles y los desarrollos de la física teórica y aplicada de Saint Venant, Culmann, Kelvin, Boussinesq, etc., da un nuevo impulso bajo el que se crean las principales redes de caminos del siglo XIX.

La aparición del automóvil inicia una etapa en la que la ingeniería de carreteras se aprovecha de la aparición de la mecánica de los suelos y desarrolla las bases tecnológicas de nuevos materiales, firmes, ordenación del tráfico, normas geométricas, etc.

El final de la Segunda Guerra Mundial, la explosión del parque automovilístico en todo el mundo, la aparición del primer ordenador, el gran aumento y transformación de todas las redes de carreteras, exigen un nuevo salto cualitativo. El estudio y aplicación de normas de trazado, el desarrollo de la ingeniería de tráfico, los grandes ensayos sobre los firmes que impulsan la mecánica de las calzadas y las investigaciones en profundidad de sus materiales, la definición y desarrollo de los sistemas de gestión, etc., pero sobre todo el desarrollo y aplicación de la segunda y tercera generación de los ordenadores, elevan toda la técnica y la ingeniería de carreteras a límites casi increíbles, como reflejan los últimos Congresos Mundiales de Carreteras de Viena, Sidney y Bruselas.

No parece que hoy se ponga en duda que ya hemos entrado en un nuevo período. El desarrollo de la microinformática, su aplicación a las organizaciones empresariales y administrativas, su utilización con los sistemas integrados de bases de datos relacionales, hojas electrónicas, tratamiento de textos, etc., y su aplicación al diseño y a la producción asistidas por ordenador -sistemas CAD-CAM-, configuran un efectivo salto cualitativo que en principio parece de mucha más importancia y alcance que los que hemos comentado anteriormente.

Nadie pone tampoco en duda que, en muy breve plazo, cualquier profesional de la ingenieria de carreteras podrá disponer de un ordenador personal, posiblemente conectado a ordenadores centrales, con el que podrá, o mejor, deberá desarrollar sus trabajos de planeamiento, diseño, proyecto, control y dirección de obras, explotación, organización y gestión.

Pero el verdadero salto cualitativo no proviene sólo de esa informatización. La rapidez y bajo coste de esa poderosa herramienta, que utilizará los bancos de datos de forma interactiva, permitirá transformar la misión y las tareas actuales del profesional de la ingeniería.

Ya no se trata tanto de calcular tensiones, deformaciones, costes, etc., como de optimizar. Optimización que, sin duda, se alcanzará con más seguridad desde pantallas gráficas interactivas que desde planteamientos matemáticos. Esa optimización podrá tener en cuenta la estética y los impactos ambientales, como no duda nadie debe hacer hoy un arquitecto. Lo importante será entonces el desarrollo de la creatividad.

Los estudios de planeamiento podrán tener como base esencial los estudios de sensibilidad y la comparación de soluciones teniendo, en cuenta más variables con mejor definición.

La gestión podrá estudiarse y controlarse aplicando eficaces métodos de simulación, etc.

Lo más importante es que todo lo anterior casi nadie lo considera ya cienciaficción, y para los más escépticos convendrá hacer un breve resumen de algunos métodos y sistemas que están empleándose actualmente, muchos de los cuales ha sido posible examinarlos en la Exposición de Bruselas.

Por lo que se refiere al proyecto, existen sistemas que permiten introducir el terreno digitalizado directamente desde el restituidor fotogramétrico, desde el taquímetro mediante libretas electrónicas, o bién desde digitalizadores.

La novedad está en que las nuevas estaciones de trabajo (workstations) están bajando de precio y son mucho más rápidas y de mayor capacidad, pudiendo conectarse a ordenadores centrales para trabajos de gran importancia, pero, sobre todo, para poder emplear mejores y mayores bancos de datos.

Existen varios sistemas, cada uno con ciertas ventajas e inconvenientes, que con seguridad, las futuras versiones irán aproximándolas en todas sus prestaciones principales.

Debe llamarse la atención sobre las llamadas «workstations» que deben tener una capacidad algo más elevada que los PC compatibles normales y mucha más rapidez. Los sistemas CAD, que pueden utilizarse en dichos PC, no tienen casi utilidad para carreteras, no obstante, sí tienen una evidente utilidad como puestos de trabajo complementarios para sustituir todos los llamados trabajos de delineación, con gran facilidad de archivo, corrección y transformación.

En cuanto al control de las tareas normales de conservación, gestión que debe incluir, al menos, el control de costes y productividad, parece idónea la utilización de un sistema integrado de gestión de base de datos relacional y una «hoja de cálculo» que pueda utilizar los mismos archivos. Con ello, en un PC es relativamente fácil conseguir el control de todas las operaciones de conservación, y realizar estudios de sensibilidad para programar las actuaciones anuales. Una aplicación de este tipo se expuso en el pabellón español de la Exposición de Bruselas.

El tema de la gestión total y globaliza-

da de una red de carreteras, especialmente de los firmes, basada principalmente en un amplio banco de datos obtenido de las auscultaciones periódicas realizadas, se presenta como ya resuelto por varias administraciones estatales y empresas especializadas.

Dada su complejidad, es imprescindible comprobar todo el proceso de utilización del banco de datos y la obtención de los programas de actuación. Como en muchas otras aplicaciones de ingeniería civil en un sistema «cerrado» de este tipo, nunca podríamos estar seguros de su precisión y del significado de las orientaciones que aconseia.

No obstante, debe advertirse que el resultado de esta gestión total informatizada no depende tanto de los programas y los ordenadores como de la calidad y periodicidad de las auscultaciones, para la obtención de las cuales también es preciso aplicar pequeños pero complejos sistemas microinformáticos.

Pero hay que llamar la atención sobre que el verdadero avance tecnológico no está ya en el desarrollo y aplicación de estos sistemas de gestión con la ayuda de la microinformática. Varias administraciones, organizaciones empresariales y centros de investigación anuncian que están comenzando a aplicar los «sistemas expertos» para auxiliar a las personas que deben tomar las decisiones sobre los programas de actuación. Esto abre un nuevo campo de investigación, pero puede asegurarse que su aplicación será normal en breve plazo.

Aquí, el salto cualitativo en el ejercicio futuro de la ingeniería de carreteras deberá ser espectacular.

Dada la complejidad que ha adquirido la técnica de carreteras parece imposible que exista un especialista que pueda tomar las decisiones con profundo conocimiento de todas sus partes. En el caso que nos ocupa, firmes, materiales, hidrología, meteorología, maquinaria, contabilidad, estudios económicos, seguridad vial, tráfico, etc. Pues bien, un «sistema experto» será la herramienta idónea para suplir gran parte de esas deficiencias. Como va es casi un hecho corriente en medicina, control de procesos industriales y otros, en la ingeniería de carreteras se podrá «almacenar» la experiencia acumulada de los mejores equipos de expertos para ponerla a disposición de forma interactiva, de los profesionales con poca experiencia.

Imaginemos, por ejemplo, el importante auxilio que supondrá para el ingeniero que proyecta un complejo enlace de carreteras, disponer de un sistema experto que le oriente en la interpretación y la utilización de los datos geológicos, geotécnicos, hidrológicos, de coste, de tráfico, etc.

Laboratorio de carreteras en Madrid.

Todo esto tampoco es ya cienciaficción. Otras tecnologías más avanzadas ya lo utilizan. La ingeniería de carreteras dispondrá de esta utilidad a mediados de la próxima década con seguridad y amplia extensión de las aplicaciones, pero si las administraciones, centros de investigación y universidades lo considerasen prioritario los plazos se acortarían notablemente.

Otro campo notable de aplicación de la informática, presentado en Bruselas especialmente por la Administración belga de carreteras, es el de la informatización de todo el proceso y control administrativo. Es un problema que se considera resuelto, y es un hecho que, incluso en España, hay empresas que ya se han informatizado totalmente.

La aplicacción de la microinformática a la ordenación y control de tráfico ha sido amplia y numerosamente expuesta también en Bruselas. Por no extendernos excesivamente llamaremos únicamente la atención sobre dos hechos. El primero es que existen pequeños sistemas que permiten en ciudades de tamaño medio realizar un adecuado control de tráfico, tanto automáticamente (se prevé también una casi inmediata aplicación de la inteligencia artificial) como de forma interactiva.

El segundo es el guiado automático por radio. Se prevé, por ejemplo, en un plazo casi inmediato que en la M-25, autopista de circunvalación del Gran Londres, se dispondrán detectores que transmitirán a las radios especiales instaladas en los vehículos, orientaciones que les conducirán por el camino más corto en tiempo, en longitud, o de más bajo coste, según se elija, al punto de destino cuyas coordenadas haya elegido previamente.

En una reciente visita realizada al TRRL en Inglaterra, el ingeniero que explicó en una maqueta el sistema en funcionamiento introdujo después en el ordenador nuestro punto de destino en Londres, y apareció en pantalla el itinerario que a esa hora era más aconsejable.

Lo expuesto anteriormente creo permite mantener la afirmación de que la técnica y la ingeniería de carreteras entra, o ha entrado ya, en un nuevo período de su desarrollo histórico, que va a suponer un nuevo concepto de lo que es y debe hacer un experto en carreteras.

Al menos hay dos importantes consideraciones que creemos deben hacerse en este punto. La primera es que los ingenieros que han de sacar la máxima rentabilidad a esas «workstations» y a los sistemas de gestión, deben tener una alta formación lo más extensa o general posible. Los futuros profesionales que han de poder tomar decisiones más adecuadas y rentables, deben saber cómo utilizar la infinidad de datos disponibles aunque sea con la ayuda de sistemas expertos. Quizá, por primera vez, empiece a tener sentido el ingeniero que se ha estado poniendo como modelo hasta hoy en nuestro país.

La segunda es que, en contra de lo anteriormente expuesto, todo parece indicar que la universidad española podría estar empezando a caminar en dirección opuesta en el momento, además, que ha de entrar en competencia con las del resto de países de la CE.

Parece obligado recordar en este momento que preparar a esos futuros ingenieros, que deben afrontar el gran reto ya citado, es una de la mayores responsabilidades de quienes dirigen los destinos de las naciones. Es esencial que se tome conciencia de la importancia de los planes de estudio y de la necesidad de disponer de los medios imprescindibles para cumplir sus objetivos.

Otra consecuencia directa de todo lo

expuesto es la imperiosa necesidad de que las administraciones públicas y las empresas incorporen a sus programas y objetivos básicos la necesidad de reciclar a todos los profesionales que se dedican a la carretera, en el menor plazo posible.

Es necesario advertir que eligiendo los sistemas adecuados, éstos pueden y deben ser utilizados por personas con mínimos conocimientos de informática.

La informática sólo debe ser a estos efectos una potente herramienta que se pone en manos de los profesionales como ponemos un vídeo o una máquina de calcular. Aplicar la informática debe hacerse, en una primera fase, simple y agradable a los menos expertos, y debe asegurarse rotundamente que ello es posible. Posteriormente, la mayoría de esos profesionales solicitarán, sin traumas, una ampliación de sus conocimientos básicos.

Debo defender que gran parte de ese esfuerzo renovador se canalice a través de la Universidad, porque con esos medios imprescindibles para el reciclado se podrá mejorar la formación de los futuros profesionales notablemente.

Pero, paralelamente a ese esfuerzo que deben realizar administración y empresas, hay que recordar a todos los profesionales que casi todo depende de ellos. De su preocupación por huir de la obsolescencia, por conseguir más libertad en su trabajo, por poder desarrollar su creatividad.

La informática que él no utilice para desarrollar con más eficacia y calidad su trabajo, puede estar seguro que sí la va a emplear la sociedad en que vive para valorarle, y lo hará de forma implacable porque por primera vez dispondrá de los medios para hacerlo.

Dentro de muy poco ningún grupo humano va a tolerar que le impongan soluciones sin justificar.

Los grandes planes de carreteras o las soluciones aisladas admiten varias y muy diferentes soluciones. Las efectivas ventajas o inconvenientes de las principales será obligado exponerlas con claridad desde los puntos de vista de seguridad, económicos, estéticos, ambientales, urbanísticos, etc.

Nunca, hasta ahora, había sido posible presentar con mínima precisión esas ventajas o inconvenientes. Unos mínimos principios deontológicos nos obligarán a hacerlo en lo sucesivo. Ahí nace la nueva, noble y bella ingeniería que nos va a tocar vivir, al menos a los más jovenes.

 Jaime Izquierdo del Fraile es Catedrático de Caminos y Aeropuertos de la Universidad de Cantabria.